THE CRYSTAL STRUCTURE OF DIBENZENE CHROMIUM AT ROOM TEMPERATURE

F. JELLINEK
Laboralorium zoor Anorganische Chemie, Rijksunieersiteit, Groningen (The Netherlands)

(Keceived June i8th, 1963)

INTRODECTION

The first approximate determination of the crystal structure of dibenzene chromium was performed b - Weiss and Fischer ${ }^{1}$. These authors found the compound to be cubic with a cell edge of $9.67 A$ and four molecules of $\mathrm{Cr}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ per unit ceil. The space group was found to be $P a_{3}$ whicin requires the molecule to have at least $C_{3 i}$ symmetry. Assuming $D_{6,}$ as the molecular symmetry Weiss and Fischer derived the distances $\mathrm{C}-\mathrm{C}$ in the ligands to be $\mathrm{x} .38 \doteq 0.05 \AA$ and $\mathrm{Cr}-\mathrm{C}$ as $2.19 \pm 0.10 \AA$.

ISOTROPIC REFINEMENT BY DIFFERENCE SY゙NTHESES

A refinement of the crystal structure of dibenzene chromiuin at room temperature was undertaken by us several years ago․ This refnement was based on threedimensional X-ray diffraction data obtained by Professor I. Lindqrist and Dr. R. D. Rosenstein, then at the University of Eppsala, Sweden. The data comprise the visually estimated intensities of x_{77} independent reflesions, covering 3.560 points of the reciprocal lattice. The reflexions had been recorded on Weissenberg photographs taken with MoKa radiation around [IIO? as the rotation axis; for the zero and first layer lines exposures with $\mathrm{Cr} \kappa$ a radiation had also been made. The observed reflexions include 29 independent refiexions (corresponding to 636 reciprocal-lattice pcints) with mixed (even and oddj indices hll, to which reflewions the Cr atom does not contribute. The space group $P a_{3}$ derived by Weiss and Fisciner ${ }^{1}$ was confirmed and the cube edge was retermined to be 9.667 A .

Because of the high multiplicity most reflexions were recorded several times on different layer lines. Scaling of the various laver lines was, therefore, straightforward; in addition, it was possible to determine the accuracy of a single estimation of the intensity as a function of the intensity. The standard deviation of a single estimation was found to be of the order of 10% in \bar{F} for strong and moderate refiexions and gradually increasing to almost 20% for the weakest cbserved reflexions. The standard deviations of the experimental structure factors used in the refinement depend on che number of individual intensity estimations of the refiexions concerned. On the average the s.d. is 6% but it is somewhat better for the reflexions with mixed indices where the intensities were estimated from films taken with both Mo and. C_{r} radiations.

Therefore, for a completely refined structure a disagreement factor R of slightly less than 5% may be expected due to experimentai inaccuracies only.

Starting from a model with $D_{B A}$ symmetry the structure was refined by successive dificrence syntheses. The caiculations were performed on the electronic computer Zehra of our Úniversity, with programmes written by Dr. D. W. Smits. Scattering inctors for C were taken from Berghuis et al. ${ }^{3}$ and for H from McWeeny ${ }^{4}$. The values for Cr_{r} were calculated from the scattering factors of Cr^{2+} given by Berghuis et al. ${ }^{3}$, which were corrected for the non-ionization of the metal-as in reference 5-and for the real part of the anomalous scattering ${ }^{6}$. In all stages of the refinement the hydrogen atoins were placed in calculated positions; their positions were not refined incependently. The hydrogen atoms were assigned the same isotropic temperature firctor as was found for both independent sets of carbon atoms; for chromium añother-smaller-thermal correction was applied. Refinement was straightforward and no difficulties due to extinction were encounterec.

When the refinement had converged, R had a value of 6.3%. The final atomic positions are given in Table 1 ; the hedrogen positions given in the table are not valculated ones, but they were derived from low-angle difference syntheses ${ }^{\text { }}$ in which

TABLE 1
ATOMIC PARAMEETERS IN DEBENZENE CHROMIUM AT ROOM TEMPERATURE

both sets of hydrogen atoms showed up quite clearly. The corresponding interatomic distances etc. and their estirnated standard deviations are listed in Table 2; these values differ slightly from those given in our preliminary communication², where they were discussed at some length. The most remarkable result is the deviation of the benzene ligands from sixiold symmetry; $C-C$ bonds of $1 .+\frac{f}{4}$ are found to alternate with bonds of 1.36 A . These distances (and all other distances in Table 2) are uncerrected for the libration of the rings about the molecular axis which was visible in hisi-angle difference syntheses. This torsional motion causes an apparent shortening of about o.or A oi all $C-C$ tond distances; the corrections that should be applied
J. Organonetal. Ciem., 1 (1g63) $43-50$

TABLE 2
interatcmic distances and angles in dibenzene chromiem at roont temperature

	Isotropic rejinemext		Anisotropic refincmeit		Cotsen ctat.*	
	F-7:	s.d.	nalue	s.d.	2ive	5.a゙.
Distanices in: A						
$\mathrm{Cl}_{1-} \mathrm{C}_{2}$	1.43S	0.014	1. 436	0.012	1.407	c.0.5 7
C.	1.357	O.O14	1.366	0.012	1.386	0.017
difference	0.031	0.024	0.070	$0.0 \geq 0$	0.021	0.030
Cr-Cr	2.134	0.010	2.143	0.008	2.138	0.012
Cr-C2	2.132	0.010	2.132	0.008	2.132	0.012
difference	0.002	0.014	O.OII	0.012	0.006	0.017
Ci-H:	1.06		1.12			
$\mathrm{C} 2-\mathrm{H}_{2}$	1.03		1.10			
Distanees from: mean caroon plane in $-\mathbf{A}$						
CE	-1.612	0.007	$\div 1.614$	0.006	1.6 ± 6	0.010
C I	-0.010	0.007	-0.013	0.006	0.004	-.010
C2	$\div 0.009$	0.007	$\div 0.013$	0.000	0.00 .4	0.010
difference	0.019	0.014	0.026	$0.0 \geq 2$	0.003	0.020
HI	$\div 0.10$		$+0.03$			
H2	+0.04		$\div 0.06$			
-ingles in degrees						
$\mathrm{Ca}_{\text {- }} \mathrm{Cl}-\mathrm{Cl}^{\prime}$	$\mathrm{I} 21-4$	I. 0	120.9	0.5		
$\mathrm{Cl}_{1} \mathrm{C} 2-\mathrm{Cl}^{\prime}$	115.5	1.0	119.0	0.5		

to the $\mathrm{Cr}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ distances are even smaller, waile the bond angles and the planarity of the rings are not affected by the libration. For further refinement the anisotropy in the tnermal motion had to be taken into account, but no Zebra programme for anisotropic refinement was available at the time.

I was most happy, therefore, when Mr. O. S. Mills of the Chenistry Department of the University of Manchester invited me to Manchester, to do a least-squares refinement of the structure with anisotropic temperature factors on thee Mercury computer of the University.

A version of Kollett's structure-factor and least-squares programme ${ }^{8}$ was av:ailable; Dr. J. S. Rollett had adapted the programme for the case: that some atoms are in special positions of space group Pa3. The calculations on the Mercury computer were performed in November 1960. After some trials a weighting scheme was derived which approximately took into account the standard deviations of the experimental structure factors, depending on the s.d. of the intensity estimation as a function of the intensity and also on the number of independent estirnations of the reflexions concerned. The same set of experimental data and the same atomic scattering factors were used as in the isotropic refinement by difference syntheses.

To avoid biasing the result, refinement was again started from a model with $D_{6 h}$ symmetry. However, it soon became evident that this symmetry is not compatible
with the experimental data. After some cycles of refinement the hydrogen atoms were also included and their positions (but not their temperature factors) were refined simultaneously with those of the other atoms. The ciomic positions, found after the refinement had converged, are included in Table \equiv, together with their standard deviations. Thermai parameters are listed in Table 3 and the observed and calculated structure factors in Table 4 . The final value of the disagreement factor R for the

TABLE 3
THERMAL PARAMETERS CF DIBENZENE CHROMIUSE AT ROOM TEMPERATERE
The temperature factors are $\exp .\left(-\sum_{i=1}^{3} \sum_{j=1}^{3} \beta_{i j} F_{i j} h_{j}\right)$

	Cr		c		$c=$	
	Fine	s.d.	suite	s.d.	:aise	s.d.
${ }_{10}{ }^{4} F_{11}$	61.5	0.4	120	6	12 S	6
$10^{2} \beta_{2}$	6I- ${ }^{\text {g }}$	0.4	59	5	109	10
$10^{4} \beta_{35}$	68.5	0.4	120	9	92	5
${ }_{10} \beta_{12}=\beta_{1}=1$	-1.9	1.6	-37	5	-5	5
${ }_{10}{ }_{10} \beta_{13}=\beta_{31}$	-1.9	1.6	$\div 2$	5	-15	5
${ }_{10}{ }^{*} \beta_{23}=\hat{\beta}_{32}$	-r.9	1.6)	-10	5	-5	5

Interatomic distances, etc., were calculated by means of programmes written by R. A. Sparks; they are given in Table 2. The results do not differ significantly from thicse of the isotropic refinement, except that the accuracy has been improved. The difference between the alternating long and short $C-5$ bonds in the rings is found as 0.07 A with a standard deviation of 0.02 A and is to be regarded as significant. This distortion from sixfold symmetry is too large to be ascribed to intermolecular interaction and should, therefore, be inherent in the $\mathrm{Cr}_{5}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}$ molecule. Furthermore, the ligand rings are found to be slightly puckered, but the deviation of the carbon atoms from their mean plare (o.or3 A with a standard deviation of 0.006 A) is barely significant. Such a puckering would lower the molecular symmetry from $D_{\text {id }}$ to $C_{3 i}$.

It was felt that the fundamental problem of the symmetry of dibenzene chromium can only be solved unambiguously by further improvement of the experimental accuracy and by suppressing thermal motion which puts a serious limitation on the accuracy witle which the carbon (and hydrogen) atoms can be placed. A low-temperaiute X-ray study by counter methods was accordingly started in our laboratery some time ago. A detailed discussion of the structure is postponed until the results of our low-temperature investigation are available.

comparisos with the stedy of Cotion et al.

Recently, however, Coiton and coworkers ${ }^{9}$ published preliminary results of an independent refinement of the crystal structure of dibenzene chromium at room temperature by isotropic least-square methods. Their results, before inclusion of the hydrogen atoms into the refinement, are also given in Table 2. It is seen that Cotton et al. find that the carbon atoms of the benzene rings form a regular hexagon within

Table IV. Cbserved end calculated strueture fectoris.

the limits of accuracy- After the inclusion of hydrogen the two independent $C-C$ distances are even found to be exactly equal, namely $1.3 S_{7} A$ with a standard deviation of o.ory A .

This discrepancy of the results of Cotton et al. with ours obviously calls for some conment and we shall try to offer a possible explanation. At first sight it may be thought that the discrepancy is due to an underestimation of the standard deviations in either or both of the investigations. However, it is believed that this is not the case. The fact that the standard deviations we derived are slightly lewer than those obtained by Cotten et al ${ }^{5}$ is probably due to our taking into account of the anisotropy of the thermal motion. The difference in standard deviations is in keeping with that of the final values of R, which are $6.1 \circ$ in the study by Cotton at al. compared to 5.3% in ours. Furthermore, we find the thermai motions of the two independent sets of carbon atoms in good agreement with each other; it is hard to assume that this agreement is coincidental, as it would be if the accuracy attained was less than calculated.

Another possible explanation :night seem that our experimental data are affected by a systematic error. Let us assume for the moment that the true symmetry of the molecule is D_{62} and that, therefore, the ligand rings are regular hexagons. What distortions would be needed to convert this model into one with rings containing aliernating long and short carbon bonds? Analysis shows that the x parameters of both C_{1} and C_{2} should increase and the y parameters of both C_{1} and C_{2} decrease in order to pass from the $D_{6 i}$ model to the "distorted" one. (The distortion is not sensitive to a change in the $=$ parameters). Just these parameter changes were found in our structure refinement (which starteg from a $D_{6 \Omega}$ model) and it would seem too much of a coincidence if a systematic error in the experimental data would cause exactly these four mutually independent effects (and leave the thermal motion almost unaffected). We conclude, therefore, that the possibility of the distortion of the rings found by us being an artifact should also be discarded.

The opposite effect, that is the enhancement of the symmetry of a $C_{3 i}$ or $D_{3 d}$ nolecule to $D_{6 \mu}$ symmetry, however, needs only the addition of a twofold rotation axis which passes through the metal atom and is perpendicalar to the planes of the rings. Such an apparent twofold axis may very well be due to orientational disorder of the molecules. Disorder of this type is not unlikely, since the two orientations would be neariy equivalent. Indeed, orientational disorder of this kind has been observed in a threc-dimensional neutron-diffraction study of ferrocene ${ }^{10}$, even though the two orientations of the ferrocene molecules are not equivalent in the crystal. A similar effect was also observed in an X-ray study of ferrocene ${ }^{11}$, but there it was ascribed to extinction. In the case of odd-membered rings, such as in ferrocene. an additionas twofold mole:ular axis can easily be recognized as an artifact, since it doubles the apparent number of ring members. In the case of even-membered rings, such as in dibeazene chromium, the additional axis only enhances the apparent symmetry of the rings and such an effect-if it is not large-can hardly, if at all, be discovered by diffraction methods.

Addition of an apparent twofold axis, caused by orientational disorder, to the dibenzene chromium rnolecule with the geometry fourd in our study would have the same (within a fraction of a percent) effect on the diffraction intensities as a libration of the rings with a r.m.s. amplitude of only $0 . S^{\circ}$ or 0.02 A , which would be almost un-
detectable as such. Furthermore, an additional twofold avis would make both sets of $C-C$ distances equal to $I .401 A$ and both sets of $C r-C$ distance $=2.138 A$; the carbon rings would become exactiy planar, while the distance of the metal atom from this plane would remain 1.61_{4} A. In other words: addition of a twofold axis to the dibenzene chromium molecule as we found it, leads to a model which is evactly that found by Cotton et al. ${ }^{9}$. These authors did indeed observe a libration of the rings about the molecular axis; very probably the small artificial libration caused by the orientational disorder is, however, swamped by a considerably larger real libration, which was also found in our study.

It appears, therefore, that the discrepancies between Cotton's results and ours on the room-temperature structure of dibenzene chromium can be completely explained by the presence of orientational disorder in the crystals investigated by Cotton et al. It should be emphasized, however, that the evidence for orientational disorder in dibenzene chromium is indirect only. While orientational disorder of odclmembered zings can be discovered directly by difiraction methods (and has been found in ferrocene), no direct proof or disproof by such methods is possible for evenmembered rings. Nevertheless it is hoped that our low-temperature study of dibenzene chromium will shed some light on this problem toc.

ACKNOWLEDGEMENTS

I am greatly indebted to the Chemistry Department of the University of Manchester and in particular to Mr. O. S. Mills, for offering me the cpportunity of working with the Ferranti Mercury computer of the Eniversity and for their kind hospitalityI should also like to express mys sincere gratitude to Dr. J. S. Rollett for adapting his structure-factor and least-squares programme for the case of dibenzere chromium; to Prof. I. Lindqvist and Dr. R. D. Rosenstem for placing their X-raÿ diagrams and intensity estimations of dibenzene chromium at my disposal; to Dr. D. W. Surs for writing the programmes for the calculations with the Zebra computer in Groningen and to Mr. H. Scherer for performing most of the calculetions on the Zebra. Finally, I wish te thank Prof. F.A. Cotrox and Dr. B. T. M. Willis for sending me manuscripts of their papers on dibenzene chromium and ferrocene resfectively fricr ${ }^{+}$publication.

SUMMARY

The crystal structure of dibenzene chromium at room temperature has been refined from three-dimensional X-ray diffraction intensities. The rescilts of the least-squares refinement, which takes account of the anisotropy of the thermal atomic motions, confirm our earlier preliminary results ${ }^{2}$ whic: : were obtained from difference syntheses. In the lizand rings $C-C$ bonds of $1 .+36 \pm 0.0 r 2 A$ aliernate with bonds of $r_{-366}^{=} 0.012 A$. The different results of Cotton ct al. ${ }^{3}$, who found no significant distortion from $D_{6 n}$ molecular symmetry, are probably due to orientational disozder in their crystals, such as has also been observed in ferrocene. In even-membered rings this disorder causes an enhancement of the apparent symmetry.

REFERENCES

I E. YYeiss hivy E. O. Fischer, 2. Anorg. Allgem. Chem., 296 (19j6) 1 q2.
2 F. JEncinek, Nature, 187 (1960) 87t.
3 I. Berghuis, Y. ML. Hahappel, M. Potters, B. O. Loofstra, C. H. MacGillavry aid A. L. Veenerdalil, Acta Cryst., S (1955) 47 S .

5 E. H. \#homas and K. Uueda, J. Chem. Phys., 26 (1957) 293.
6 C. H. Dalben and D. H. Templeton, Acta Cryst., 8 (1955) S41.
7F. jellines, Acia Crysí, II (195S) 677.
\& O S. Millos ind j. S. Rollett, in: Computing methods and the phase probleme in X-ray crystal analjsis. Fergamon, 1961, p. 107.
9 F. A. Cotron, W. A. Dollase and J. S. Wood, J. Am. Chem. Soc., 85 (1963) 1543-
to B. T. M. Willis, :ERE Report (Haricell) - R 370 (1961).
if J. D. Dunitz, L. E. Orgel and A. Rich, Acta Cryst., 9 (1956) 373.
J. Organometal. Chem., I (1963) 43-50

